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1 Introduction
Advantages of ideal imaging FTS’s:� Spectral resolution can be varied easily by changing mirror

scan path length and is usually much better than for a sim-
ilar size dispersive instrument.� High light throughput leads to improved signal to detector
background ratio.� Because the radiance spectrum is real the interferogram is
an even function which allows using only one-sided inter-
ferograms, thus reducing the data storage requirements.� 2-d image of scene is acquired allowing analysis of moving
objects in the scene.

Problems of ideal imaging FTS’s:� Larger photon background noise because all light from a
spectral region falls on the detector.� Large dynamic range requires a large number of digitiza-
tion levels.

Problems with real imaging FTS data:� Lenses, filters and beam splitter (sometimes also electronic
amplifiers) introduce phase errors due to frequency depen-
dent path differences which result in a broadening of the
center-burst. Because the center-burst of a FTS with phase
errors is in general asymmetric, full two-sided interfero-
grams need to taken. Dispersion also reduces the dynamic
range thus requiring fewer quantization levels [Griffiths
and de Haseth].� Pointing jitter smears out spatial information and can intro-
duce unwanted spectral features.� Internal reflections within the detector cause secondary
ghosts (channeling) of the center-burst to appear in the spa-
tial or interferogram domain� Non-linear detector response causes harmonics to appear
in the spectral domain� Dead or noisy pixels must be corrected before jitter can be
removed.

Solutions to real-world problems:� Phase corrections using complex FFT’s reduce the broaden-
ing of the center-burst.� Correlation of flat-fielded frames of interferogram cube
with a reference frame determines x/y shifts which can
then be used to re-sample the image cube.� Mask the channeling out before performing the Fast Fourier
transform (FFT) to reduce the ringing.� Correct the measured data by applying the inverse of the
non-linear detector model to minimize spectral harmonics.� Use bad pixel detection algorithms and morphologic image
operators to interpolate values over bad pixels.

2 A flexible FTS model
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Parameters for simulation:� 3 calibration sources at temperatures
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Task: Simulate the effect of phase errors, channeling and non-
linearity on the 2-point calibration error on the measured black
body ( F�F � ) using ( F�F � ) and ( F�F � ) measurements.
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2.2 Linear FTS simulation
Filter function
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Interferograms @ 20,30 and 40 C
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Note: The strongly peaked symmetric center-burst which al-
lows the acquisition of one-sided interferograms.

2.3 Linear + dispersion FTS simulation
Phase Dispersion
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Interferograms @ 20,30 and 40 C
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Note: The spread-out center-burst is no longer symmetric any-
more, thus two-sided interferograms need to be taken. Also
the dynamic range is reduced compared to the non-dispersed
FTS.

2.4 Linear + dispersion + channeling
FTS simulation

Amplitude Modulation
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Interferograms @ 20,30 and 40 C
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Note: Channeling causes ghosts of the center-burst. In the
spectral domain the channeling manifests itself as amplitude
modulations.

2.5 Non-linear + dispersion + channel-
ing FTS simulation

Nonlinearity
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Non-linear Interferograms

0 1000 2000 3000 4000
Sample

2.50

2.60

2.70

2.80

2.90

D
N

Raw Spectra: 30 C (red=nonlin)

1000 2000 3000 4000
Wavenumber

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

R
aw

 D
N

BB1(nonlin)-30 C

800 900 1000 1100 1200
Wavenumber

-1.0

-0.5

0.0

0.5

1.0

T
em

pe
ra

tu
re

 E
rr

or
 in

 K

Note: The spectral harmonics occur at the sum and differences
of the in-band wavenumbers. There is a corresponding non-
zero mean temperature offset on F�F � and increased tempera-
ture noise compared to linear FTS’s.

3 Radiometric corrections
3.1 Phase error correction
Concept: Using a phase estimation technique it is possible to
convert a dispersed interferogram into a non-dispersed inter-
ferogram.

Note: Experience with FTS data shows that there is usually
only a small improvement of SNR (theoretical improvement isY �

) if a phase correction is performed.

3.2 Channeling effect correction
Concept: Cutting off (apodizing) of the channeling bursts gets
rid of the strong oscillation in the spectral domain.
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Note: Removing channeling eliminates the sinusoidal modu-
lation in the spectral domain. Removing the channeling, how-
ever, introduces instrument functions with side lobes (see fig-
ure) which introduce ringing near narrow spectral features, i.e.
atmospheric absorption lines.

3.3 Non-linear response correction
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Note: The exponent 0.33 was correctly identified.

4 Geometric corrections
Problem: Given a reference image G&# � % and a sequence of �
x/y shifted and rotated images find the optimal shifts, I�b c d # C=%
and e b c d # C=% and rotation, "�b c d # C=% , to minimize:

�
L
��fB# G&# � % Thg D 7 3;7 : # i j&6 a�7 # G&# C=% % 
 I�b c d # C=% 
 e b c d # C=% % 
 "�b c d # C=% % % 0

Possible Algorithms:

1. Direct 3-D cross correlation to find x/y shifts and rotation.

2. Direct 2-D cross correlation to find x/y shifts

3. Adaptive (from low resolution to high-resolution) 2-D im-
age correlation

4. Reduce problem to separable 1-D correlations to also han-
dle rotations

Advantages of 4 over 1-3: Perform simple 1-D correlations
rather than computationally expensive 2 or 3-dimensional.
Methods 2 and 3 only work for shifts.

4.1 Fast x/y shift determination
Block diagram for a fast tracking algorithm:
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Steps:

1. Initialize a maximum search range � � , e.g. +/- 5 pixels
2. Sum over all rows and columns of reference frame to obtain

1-D vectors ��k # � % �ml k # G�# � % % and ��n # � % l n # G&# � % % .
3. For frame C and K iterations do:

(a) Let I&b c d o � # C=% � I&b c d # C T�� % and e b c d o � # C=% � e b c d # C T�� %
(b) Cross-correlate 1-D vectors over a range of shifts fromT � to � in 11 steps:
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with ��k # � % and �&n # � % to find residual shifts q k and q n
which minimize �
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(c) Let I&b c d o H # C�% � I&b c d o H ! � # C�% T q k o H ! � and e b c d o H # C=% �
e b c d o H ! � # C�% T q n o H ! �

(d) Reduce the range by �QH � ��H ! � r �

4.2 Fast rotation determination
Steps:

1. Initialize a maximum search angle range for s � , e.g. +/- 5
degrees

2. Sum over all rows and columns of reference frame to obtain
1-D vectors ��k # � % �ml k # G�# � % % and ��n # � % l n # G&# � % % .

3. For frame C and K iterations do:
(a) Let "�b c d o � # C=% � "�b c d # C T�� %
(b) Cross-correlate 1-D vectors over a range of angles fromT s to s in 11 steps:
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with ��k # � % and ��n # � % to find residual rotation angle q "
which minimize �
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(c) Let "�b c d o H # C=% � "�b c d o H ! � # C=% T q "�H ! �
(d) Reduce the angular range by s H � s H ! � r �

4.3 Effect of jitter
Effect of jitter depends on the surrounding area:� A bright pixel surrounded by dark pixels shows strong base

line shifts� A dark pixel surrounded by dark pixels shows strong base
line shifts� A pixel in a uniform region shows no baseline shifts

(a) (b) (c)

Effect of Jitter Restoration on Pixels near Contrasts (a,b) and in
uniform Regions (c) shown in the FTIR data cube
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Experiment Steps:
1. Generate a simulated linear FTS image cube

	��
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each frame of the cube using a known jitter function I�b � � # C=%
and e b � � # C�% to obtain a cube

	�t
.

2. Perform un-jittering of cube and store result in
	vu

.
3. Fourier transform
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,
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and compute the average
spectra over a region of 32 x 32 pixels
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Notes: The un-jittering process has little effect on the spec-
tral region of interest (500-800 arbitrary wavenumbers) but re-
duces the spurious signal near zero wavenumber.

4.4 Results
Experiment

�
: Recorded 117 frames of video from camera

placed on a shaking surface and tracked shifts and rotations
Effect of jitter and jitter-correction on overall image quality:
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Results of tracking for video sequence:
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Experiment
�
: Track motions in a simulated FTS cube:
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Phase Diagram
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Additional processing:
Frame flat fielding: There may be residual stripes in each
frame for the CAL and DATA cubes which need to be removed
before cross-correlations are performed for jitter removal

Bad pixel fixing steps:

1. Find ”bad pixels”=”dead” pixels and ”noisy” pixels

2. Grow a region around ”bad pixels” using a cross shaped
kernel

3. Delauney triangulation of neighbor pixels and quintic in-
terpolation at bad pixels

5 Data compression

Facts:� System spectral response is usually band limited (e.g. 8-12w  band).
� Only a fraction (1/8 th) of the spectral image cube is re-

tained after the FFT which is a ��x > y � complex operation.

Example: Compute ratio of the number of multiplications re-
quired for a reduced FFT with down-sampling over the num-
ber required for a full FFT a function of interferogram length� and finite-impulse-response (FIR) length S :
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Problem: Find a solution to reduce the amount of operations
to generate the spectral cube and save storage space for the
raw data.

Solution: Modulate the interferogram and low-pass filter
with a super-heterodyne receiver.
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6 Conclusions
Several “real world” effects on FTS data have been presented
and some methods to reduce their effect:� Channeling can be removed by apodizing the interfero-

gram with the penalty of introducing ringing near spectral
lines or calibrated out given a sufficiently stable FTS sys-
tem.
� Jitter removal improves image sharpness but has little effect

on spectral fidelity if the jitter is low-frequency.

� Non-linearity corrections eliminate systematic calibration
errors.
� Super-Heterodyne processing reduces the amount of oper-

ations to generate the spectral cube and storage require-
ments.
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